$Title Chapter 6 (Fig. 6.4)
$Title Mathematical formulation for the Modified MOLP DEA model for output values and the corresponding GAMS code
$onText
If using this code, please cite:
---------------------------------------------------------------------------------
Emrouznejad, A., P. Petridis, and V. Charles (2023). Data Envelopment Analysis
with GAMS: A Handbook on Productivity Analysis, and Performance Measurement,
Springer, ISBN: 978-3-031-30700-3.
---------------------------------------------------------------------------------
Website: https://dataenvelopment.com/GAMS/
$offText
Sets j DMUs /DMU1*DMU10/
sc scenarios /SC1*SC100/
g Inputs and Outputs /Prodc, Trn, Inv, SatDem, Rev/
i(g) Inputs /Prodc, Trn, Inv/
r(g) Outputs /SatDem, Rev/;
alias(jj,j);
alias(k,jj);
Table Data(j,g) Data for inputs and outputs
Prodc Trn Inv SatDem Rev
DMU1 10 100 61 20 2.64
DMU2 52 125 100 6 5.29
DMU3 24 54 56 17 2.43
DMU4 45 91 14 2 8.99
DMU5 51 10 67 19 2.94
DMU6 52 26 56 17 0.75
DMU7 22 35 34 17 6.36
DMU8 91 56 101 10 7.2
DMU9 43 72 55 9 2.16
DMU10 34 39 16 8 7.3;
Parameter w(sc) weights on outputs for scenario s
loop(sc,
w(sc)=ORD(sc)/100;
);
Variables efficiency objective function
sigma(r) �*y;
Nonnegative variables
l(j) dual weights (Lambda values);
Parameters DMU_data(g) slice of data
lamres(j,j) peers for each DMU
res_sigma(r,sc) results for sigma for each scenario s
ww slice of res_sigma;
Equations OBJ Objective function of the MOLP model
CON1(i) Input constraints for MOLP model
CON2(r) Output constraints for MOLP model;
OBJ.. efficiency=E=sigma('SatDem')*ww*DMU_data('SatDem')+sigma('Rev')*(1-ww)*DMU_data('Rev');
CON1(i).. SUM(j, l(j)*Data(j,i))=L=DMU_data(i);
CON2(r).. SUM(j, l(j)*Data(j,r))=E=sigma(r)*DMU_data(r);
model MOLP_DEA Multi Objective LP DEA /All/;
loop(sc,
ww = w(sc);
loop(jj,
DMU_data(g) = Data(jj,g);
solve MOLP_DEA using LP maximizing efficiency;
loop(k,
Lamres(jj,k)=l.l(k);
);
res_sigma(r,sc)= sigma.l(r);
);
);
display res_sigma;
execute_unload