$Title Chapter 1 (Fig. 1.1)
$Title Mathematical formulation of the transportation model and the corresponding GAMS code
$onText
If using this code, please cite:
---------------------------------------------------------------------------------
Emrouznejad, A., P. Petridis, and V. Charles (2023). Data Envelopment Analysis
with GAMS: A Handbook on Productivity Analysis, and Performance Measurement,
Springer, ISBN: 978-3-031-30700-3.
---------------------------------------------------------------------------------
Website: https://dataenvelopment.com/GAMS/
$offText
Sets i Plants /Plant1*Plant3/
j Markets /Market1*Market4/;
Parameter S(i) Supply of plant i
/
Plant1 150
Plant2 100
Plant3 250/;
Parameter D(j) Demand of market j
/
Market1 100
Market2 100
Market3 200
Market4 100/;
Table c(i,j) unit transportation cost
Market1 Market2 Market3 Market4
Plant1 0.54 0.32 0.1 0.29
Plant2 0.3 0.78 0.76 0.27
Plant3 0.44 0.19 0.61 0.97;
Variables
TC Total cost
Nonnegative variables
x(i,j) quantity transported from plant i to market j
Equations
TotalCost objective function
Supply(i) supply constraint
Demand(j) demand constraint;
TotalCost.. TC=E=SUM(i,SUM(j,c(i,j)*x(i,j)));
Supply(i).. SUM(j,x(i,j))=L=S(i);
Demand(j).. SUM(i,x(i,j))=G=D(j);
Model Transportation_example /All/
Solve Transportation_example min TC using LP
Display TC.l, x.l, x.m;