$Title Chapter 3 (Fig. 3.17) $Title Mathematical formulation of categorical variables in DEA under the VRS technol-ogy with and the corresponding GAMS code $onText If using this code, please cite: --------------------------------------------------------------------------------- Emrouznejad, A., P. Petridis, and V. Charles (2023). Data Envelopment Analysis with GAMS: A Handbook on Productivity Analysis, and Performance Measurement, Springer, ISBN: 978-3-031-30700-3. --------------------------------------------------------------------------------- Website: https://dataenvelopment.com/GAMS/ $offText Sets j DMUs /DMU1*DMU10/ g Inputs and Outputs /ProdCost,TrnCost, HoldInv, SatDem, Rev/ i(g) Inputs /ProdCost, TrnCost, HoldInv/ r(g) Outputs /SatDem, Rev/ l categorical orientations /Or1*Or4/; alias(jj,j); alias(kk,jj); Table Data(j,g) Data for inputs and outputs ProdCost TrnCost HoldInv SatDem Rev DMU1 0.255 0.161 0.373 20 2.64 DMU2 0.98 0.248 0.606 6 5.29 DMU3 0.507 0.937 0.749 17 2.43 DMU4 0.305 0.249 0.841 2 8.99 DMU5 0.659 0.248 0.979 19 2.94 DMU6 0.568 0.508 0.919 17 0.75 DMU7 0.583 0.628 0.732 17 6.36 DMU8 0.627 0.675 0.738 10 7.2 DMU9 0.772 0.657 0.486 9 2.16 DMU10 0.917 0.639 0.234 8 7.3; Table w(j,l) Descriptor service vector Or1 Or2 Or3 Or4 DMU1 1 1 1 0 DMU2 0 1 1 1 DMU3 0 0 0 1 DMU4 1 1 1 0 DMU5 1 0 1 0 DMU6 1 1 1 0 DMU7 1 1 1 1 DMU8 1 0 0 0 DMU9 0 0 0 0 DMU10 0 0 0 0; Variables objective objective function for model Lambda(j) dual weights (Lambda values); Nonnegative variables Lambda(j) dual weights (Lambda values) Binary variables t(l) Binary auxiliary variables; Parameters DMU_data(g) slice of data Lamres_s(j,j) peers for each DMU for strong disposability model slice_w(l) slice of descriptor service vector res_t(j,l) parameter for binary variables; Equations OBJ objective function CON1(i) input constraint CON2(r) output constraint CON3(l) service orientation CON4(l) sequential improvememt constraint VRS VRS constraint; OBJ.. objective=E=SUM(l$(ORD(l)<=(CARD(l)-1)),t(l)); CON1(i).. SUM(j, Lambda(j)*Data(j,i))=L=DMU_data(i); CON2(r).. SUM(j, Lambda(j)*Data(j,r))=G=DMU_data(r); CON3(l)$(ORD(l)<=(CARD(l)-1)).. SUM(j, Lambda(j)*w(j,l))-t(l)=E=slice_w(l); CON4(l)$(ORD(l)>=2 AND ORD(l)<=(CARD(l)-1)).. t(l-1)=G=t(l); VRS.. SUM(j,Lambda(j))=E=1; model DEA_categorical MIP model with categorical variables /OBJ, CON1, CON2, CON3, CON4, VRS/; loop(jj, DMU_data(g) = Data(jj,g); slice_w(l)= w(jj,l); solve DEA_categorical maximizing objective using MIP ; res_t(jj,l)=t.l(l); ); Display res_t; execute_unload