$Title Chapter 3 (Fig. 3.19) $Title Mathematical formulation of stochastic (Chance constraints) efficiency models and the corresponding GAMS code $onText If using this code, please cite: --------------------------------------------------------------------------------- Emrouznejad, A., P. Petridis, and V. Charles (2023). Data Envelopment Analysis with GAMS: A Handbook on Productivity Analysis, and Performance Measurement, Springer, ISBN: 978-3-031-30700-3. --------------------------------------------------------------------------------- Website: https://dataenvelopment.com/GAMS/ $offText Option NLP=KNITRO; Sets j DMUs /DMU1*DMU10/ g Inputs and Outputs /ProdCost,TrnCost, HoldInv, SatDem, Rev/ i(g) Inputs /ProdCost, TrnCost, HoldInv/ r(g) Outputs /SatDem, Rev/ alias(jj,j); Table Data(j,g) Data for inputs and outputs ProdCost TrnCost HoldInv SatDem Rev DMU1 0.255 0.161 0.373 20 2.64 DMU2 0.98 0.248 0.606 6 5.29 DMU3 0.507 0.937 0.749 17 2.43 DMU4 0.305 0.249 0.841 2 8.99 DMU5 0.659 0.248 0.979 19 2.94 DMU6 0.568 0.508 0.919 17 0.75 DMU7 0.583 0.628 0.732 17 6.36 DMU8 0.627 0.675 0.738 10 7.2 DMU9 0.772 0.657 0.486 9 2.16 DMU10 0.917 0.639 0.234 8 7.3; Parameters var_in(i) variance for inputs, var_out(r) Variance for outputs, mux(i) average of inputs, muy(r) average of outputs, Data_DMU(g), cc1, sigma_out(r), sigma_in(i), DMU_data_stoch_form(g), res_stat(j); mux(i)=(1/CARD(j))*SUM(j,Data(j,i)); muy(r)=(1/CARD(j))*SUM(j,Data(j,r)); ******************Output parameters**************************************************************** var_out(r)= (1/(CARD(j)-1))*SUM(j,power((Data(j,r)-muy(r)),2)); sigma_out(r) = sqrt(var_out(r)); *************************************************************************************************** ******************Input parameters***************************************************************** var_in(i)= (1/(CARD(j)-1))*SUM(j,power((Data(j,i)-mux(i)),2)); sigma_in(i) = sqrt(var_in(i)); *************************************************************************************************** Scalar Alpha /0.5/; Parameter FF frictional function; FF=errorf(Alpha); Variables objective objective function for model Lambda(j) dual weights (Lambda values) Phi Output efficiency scores; Nonnegative variables Lambda(j) dual weights (Lambda values) sminus(i) input slack variable splus(r) output slack variable; Parameters DMU_data(g) slice of data Lamres(j,j) peers for each DMU res_Phi(j) output efficiency results; Equations OBJ objective function CON1(r) output constraint CON2(i) input constraint VRS VRS constraint; OBJ.. objective=E=Phi+1E-3*(SUM(i,sminus(i))+SUM(r,splus(r))); CON1(r).. Phi*DMU_data_stoch_form(r)-SUM(j$(ord(j)<>cc1), Lambda(j)*Data(j,r))+splus(r)=E=0; CON2(i).. SUM(j$(ord(j)<>cc1), Lambda(j)*Data(j,i))+sminus(i)=E=DMU_data_stoch_form(i); VRS.. SUM(j,Lambda(j))=E=1; model Chance_DEA_constraints /OBJ, CON1, CON2, VRS/; loop(jj, DMU_data(g) = Data(jj,g); DMU_data_stoch_form(r) = DMU_data(r) - FF*sigma_out(r); DMU_data_stoch_form(i) = DMU_data(i) + FF*sigma_in(i); cc1 = ord(jj); solve Chance_DEA_constraints max objective using LP; res_Phi(jj)=Phi.l; res_stat(jj)=Chance_DEA_constraints.modelstat; ); display res_Phi; execute_unload