$Title Chapter 4 (Fig. 4.1)
$Title Mathematical formulation of the non-radial VRS DEA model and the corresponding GAMS code
$onText
If using this code, please cite:
---------------------------------------------------------------------------------
Emrouznejad, A., P. Petridis, and V. Charles (2023). Data Envelopment Analysis
with GAMS: A Handbook on Productivity Analysis, and Performance Measurement,
Springer, ISBN: 978-3-031-30700-3.
---------------------------------------------------------------------------------
Website: https://dataenvelopment.com/GAMS/
$offText
Sets j DMUs /DMU1*DMU10/
g Inputs and Outputs /ProdCost, TrnCost, HoldInv, SatDem, Rev/
i(g) Inputs /ProdCost, TrnCost, HoldInv/
r(g) Outputs /SatDem, Rev/;
alias(jj,j);
alias(k,jj);
Table Data(j,g) Data for inputs and outputs
ProdCost TrnCost HoldInv SatDem Rev
DMU1 0.255 0.161 0.373 20 2.64
DMU2 0.98 0.248 0.606 6 5.29
DMU3 0.507 0.937 0.749 17 2.43
DMU4 0.305 0.249 0.841 2 8.99
DMU5 0.659 0.248 0.979 19 2.94
DMU6 0.568 0.508 0.919 17 0.75
DMU7 0.583 0.628 0.732 17 6.36
DMU8 0.627 0.675 0.738 10 7.2
DMU9 0.772 0.657 0.486 9 2.16
DMU10 0.917 0.639 0.234 8 7.3;
Variables efficiency objective function for radial model
efficiency_nr objective function for non-radial model
Theta(i) efficiency (Theta values) for second stage
Lambda(j) dual weights (Lambda values)
splus(r) slacks assigned to inputs;
Nonnegative variables
Lambda(j)
sminus(i)
splus(r);
Parameters DMU_data(g) slice of data
eff(j,i) Optimal values for Theta(i) for each DMU
slice_theta(i) slice of efficiency for second stage of non-radial model
lamres(j,j) peers for each DMU
slacks(j,g) slacks for inputs and outputs
m ;
m=CARD(i);
Equations OBJ objective function
CON1(i) input duals
CON2(r) output dual
CON3(i) Theta less than 1
CON4 VRS orientation
OBJ_nr objective function of input slack non-radial model
CON1_nr(i) input duals non-radial model
CON2_nr(r) output duals non-radial model;
OBJ.. efficiency=E=1/m*{SUM(i,Theta(i))-1E-6*SUM(r,splus(r))};
CON1(i).. SUM(j, Lambda(j)*Data(j,i))=E=Theta(i)*DMU_data(i);
CON2(r).. SUM(j, Lambda(j)*Data(j,r))-splus(r)=E=DMU_data(r);
CON3(i).. Theta(i)=L=1;
CON4.. SUM(j, Lambda(j))=E=1;
OBJ_nr.. efficiency_nr=E=SUM(r,splus(r));
CON1_nr(i).. SUM(j, Lambda(j)*Data(j,i))=E=Theta(i)*DMU_data(i);
CON2_nr(r).. SUM(j, Lambda(j)*Data(j,r))-splus(r)=E=DMU_data(r);
model DEA_radial_VRS input oriented for radial
/ OBJ, CON1, CON2, CON3, CON4/;
model DEA_non_radial_VRS input slack for non-radial
/ OBJ_nr, CON1_nr, CON2_nr, CON4/;
loop(jj,
DMU_data(g) = Data(jj,g);
solve DEA_radial_VRS using LP minimizing Efficiency;
eff(jj,i)=Theta.l(i);
loop(k,
Lamres(jj,k)=Lambda.l(k);
);
);
loop(jj,
DMU_data(g) = Data(jj,g);
slice_theta(i)=eff(jj,i);
solve DEA_non_radial_VRS using LP maximizing Efficiency_nr ;
slacks(jj,r)=splus.l(r);
loop(kk,
Lamres(jj,k)=Lambda.l(k);
);
);
Execute_unload