GAMS code for Data Envelopment Analysis

Chapter 4 (Fig. 4.14) – The mathematical formulation of the RDM for negative data (inputs/outputs)

$Title Chapter 4 (Fig. 4.14)
$Title Mathematical formulation of the RDM for negative data (inputs/outputs) and the corresponding GAMS code

$onText

If using this code, please cite:

---------------------------------------------------------------------------------
Emrouznejad, A., P. Petridis, and V. Charles (2023). Data Envelopment Analysis
with GAMS: A Handbook on Productivity Analysis, and Performance Measurement,
Springer, ISBN: 978-3-031-30700-3.
---------------------------------------------------------------------------------

Website: https://dataenvelopment.com/GAMS/

$offText

Sets    j DMUs /DMU1*DMU10/
        g Inputs and Outputs /ProdCost, TrnCost, HoldInv, SatDem, Rev/
        i(g)  Inputs /ProdCost, TrnCost, HoldInv/
        r(g) Outputs /SatDem, Rev/;
        alias(jj,j);
        alias(jj,kk);

Table Data(j,g) Data for inputs and outputs

           ProdCost     TrnCost      HoldInv     SatDem      Rev
DMU1        0.255        0.161        0.373        20       -2.64
DMU2        0.98         0.248        0.606        6        -5.29
DMU3        0.507        0.937        0.749        17       -2.43
DMU4        0.305        0.249        0.841        2        -8.99
DMU5        0.659        0.248        0.979        19       -2.94
DMU6        0.568        0.508        0.919        17       -0.75
DMU7        0.583        0.628        0.732        17       -6.36
DMU8        0.627        0.675        0.738        10       -7.2
DMU9        0.772        0.657        0.486        9        -2.16
DMU10       0.917        0.639        0.234        8        -7.3;

variables beta0 Inefficiency measure;
nonnegative variables lambda(j);

Parameters

Rplus(j,r) R+ for each DMU and output,
Rminus(j,i) R- for each DMU and input,
max_y(r) max of y,
min_x(i) min of x,
dmu_data(g) slice of data,
Lamres(j,j) peers for each DMU
Rmin(i) slice of R-,
Rpl(r) slice of R+,
eff(j) beta0,
total_eff(j) 1-beta0,
stat(j);

max_y(r) = smax(j,Data(j,r));
min_x(i) = smax(j,Data(j,i));

loop(jj,
   Rplus(jj,r) =  max_y(r) - Data(jj,r);
   Rminus(jj,i) =  Data(jj,i) - min_x(i);
   );


EQUATIONS

CON1(i)  inputs constraint with Rmin
CON2(r)  outputs constraint with Rmax
CON3     VRS constraint;

CON1(i).. SUM(j,lambda(j)*Data(j,i))=L=dmu_data(i)-beta0*Rmin(i);
CON2(r).. SUM(j,lambda(j)*Data(j,r))=G=dmu_data(r)+beta0*Rpl(r);
CON3..    SUM(j,lambda(j))=E=1;

Model Neg Negative data Range Adjusted Measure (RAM) model /All/

loop(jj,
    dmu_data(g) = Data(jj,g);
    Rmin(i) = Rminus(jj,i);
    Rpl(r) =  Rplus(jj,r);
    Solve Neg max beta0 using LP;
    eff(jj) = beta0.l;
    total_eff(jj) = 1- eff(jj);
    stat(jj) = neg.modelstat;
   loop(kk,
      Lamres(jj,kk)=Lambda.l(kk);
    );
);

display eff, total_eff, Lamres;

execute_unload