$Title Chapter 4 (Fig. 4.18) $Title Mathematical formulation of MSBM for negative data (inputs/outputs) and the corresponding GAMS code $onText If using this code, please cite: --------------------------------------------------------------------------------- Emrouznejad, A., P. Petridis, and V. Charles (2023). Data Envelopment Analysis with GAMS: A Handbook on Productivity Analysis, and Performance Measurement, Springer, ISBN: 978-3-031-30700-3. --------------------------------------------------------------------------------- Website: https://dataenvelopment.com/GAMS/ $offText Sets j DMUs /DMU1*DMU10/ g Inputs and Outputs /ProdCost, TrnCost, HoldInv, SatDem, Rev/ i(g) Inputs /ProdCost, TrnCost, HoldInv/ r(g) Outputs /SatDem, Rev/; alias(jj,j); alias(jj,kk); Table Data(j,g) Data for inputs and outputs ProdCost TrnCost HoldInv SatDem Rev DMU1 0.255 0.161 0.373 20 -2.64 DMU2 0.98 0.248 0.606 6 -5.29 DMU3 0.507 0.937 0.749 17 -2.43 DMU4 0.305 0.249 0.841 2 -8.99 DMU5 0.659 0.248 0.979 19 -2.94 DMU6 0.568 0.508 0.919 17 -0.75 DMU7 0.583 0.628 0.732 17 -6.36 DMU8 0.627 0.675 0.738 10 -7.2 DMU9 0.772 0.657 0.486 9 -2.16 DMU10 0.917 0.639 0.234 8 -7.3; Parameters Rplus(j,r), Rminus(j,i), max_y(r), min_x(i), dmu_data(g), Rmin(i), Rpl(r), res_eff(j), Lamres(j,j), stat(j); max_y(r) = smax(j,Data(j,r)); min_x(i) = smax(j,Data(j,i)); loop(jj, Rplus(jj,r) = max_y(r) - Data(jj,r); Rminus(jj,i) = Data(jj,i) - min_x(i); ); Rplus(jj,r)$(Rplus(jj,r)=0)=10**3; Rminus(jj,i)$(Rminus(jj,i)=0)=10**3; parameters w(i), v(r); w(i) = 1/CARD(i); v(r) = 1/CARD(r); variables tau efficiency measure; nonnegative variables lambda(j) peers of DMU j, t auxiliary variable, sminus(i) slack variable for inputs, splus(r) slack variable for outputs; EQUATIONS OBJ Objective function CON1(i) Inputs constraint CON2(r) Outputs constraint CON3 CON4; OBJ.. tau =E=t-SUM(i,(sminus(i)*w(i))/Rmin(i)); CON1(i).. SUM(j,lambda(j)*Data(j,i))+sminus(i)=E=dmu_data(i)*t; CON2(r).. SUM(j,lambda(j)*Data(j,r))-splus(r)=E=dmu_data(r)*t; CON3.. SUM(r,(v(r)*splus(r))/Rpl(r))+t=E=1; CON4.. SUM(j,lambda(j))=E=t; Model MSBM/All/ loop(jj, dmu_data(g) = Data(jj,g); Rmin(i) = Rminus(jj,i); Rpl(r) = Rplus(jj,r); Solve MSBM min tau using LP; res_eff(jj) = tau.l; stat(jj) = MSBM.modelstat; loop(kk, Lamres(jj,kk)=Lambda.l(kk); ); ); display res_eff, lamres; execute_unload